
Creating Embeddings of Heterogeneous Relational
Datasets for Data Integration Tasks

Riccardo Cappuzzo
cappuzzo@eurecom.fr

EURECOM

Paolo Papotti
papotti@eurecom.fr

EURECOM

Saravanan
Thirumuruganathan

sthirumuruganathan@hbku.edu.
qa

QCRI, HBKU

ABSTRACT
Deep learning based techniques have been recently usedwith
promising results for data integration problems. Some meth-
ods directly use pre-trained embeddings that were trained
on a large corpus such as Wikipedia. However, they may not
always be an appropriate choice for enterprise datasets with
custom vocabulary. Other methods adapt techniques from
natural language processing to obtain embeddings for the
enterprise’s relational data. However, this approach blindly
treats a tuple as a sentence, thus losing a large amount of
contextual information present in the tuple.
We propose algorithms for obtaining local embeddings

that are effective for data integration tasks on relational
databases. We make four major contributions. First, we de-
scribe a compact graph-based representation that allows the
specification of a rich set of relationships inherent in the re-
lational world. Second, we propose how to derive sentences
from such a graph that effectively “describe" the similarity
across elements (tokens, attributes, rows) in the two datasets.
The embeddings are learned based on such sentences. Third,
we propose effective optimization to improve the quality of
the learned embeddings and the performance of integration
tasks. Finally, we propose a diverse collection of criteria to
evaluate relational embeddings and perform an extensive
set of experiments validating them against multiple baseline
methods. Our experiments show that our framework, EmbDI,
produces meaningful results for data integration tasks such
as schema matching and entity resolution both in supervised
and unsupervised settings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389742

CCS CONCEPTS
• Theory of computation → Data integration;

KEYWORDS
data integration; embeddings; deep learning; schema match-
ing; entity resolution
ACM Reference Format:
Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuru-
ganathan. 2020. Creating Embeddings of Heterogeneous Relational
Datasets for Data Integration Tasks . In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3318464.3389742

1 INTRODUCTION
Data in an enterprise is often scattered across information
silos. The problem of data integration concerns the combi-
nation of information from heterogeneous relational data
sources [19]. It is a challenging first step before data analytics
can be performed to extract value from data. Unfortunately,
it is also an expensive task for humans [33]. An often cited
statistic is that data scientists spend 80% of their time inte-
grating and curating their data [17]. Due to its importance,
the problem of data integration has been studied extensively
by the database community. Traditional approaches require
substantial effort from domain scientists to generate features
and labeled data or domain specific rules [19]. There has
been increasing interest in achieving accurate data integra-
tion with dramatically less human effort.

1.1 Word Embeddings for Data Integration
Embeddings have been successfully used for data integration
tasks such as entity resolution [8, 14, 25, 30, 35, 38], schema
matching [16, 26, 29], identification of related concepts [15],
and data curation in general [24, 36]. Typically, these works
fall into two dominant paradigms based on how they ob-
tain word embeddings. The first is to reuse pre-trained word
embeddings computed for a given task. The second is to
build local word embeddings that are specific to the dataset.
These methods treat each tuple as a sentence by reusing the

https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742

same techniques for learning word embeddings employed in
natural language processing.
However, both approaches fall short in some circum-

stances. Enterprise datasets tend to contain custom vocab-
ulary. For example, consider the small datasets reported in
the left-hand side of Figure 1. The pre-trained embeddings
do not capture the semantics expressed by these datasets
and do not contain embeddings for the word “Rick”. Ap-
proaches that treat a tuple as a sentence miss a number of
signals such as attribute boundaries, integrity constraints,
and so on. Moreover, existing approaches do not consider
the generation of embeddings from heterogeneous datasets,
with different attributes and alternative value formats. These
observations motivate the generation of local embeddings
for the relational datasets at hand.

1.2 Local Embeddings for Data Integration
We advocate for the design of local embeddings that leverage
both the relational nature of the data and the downstream
task of data integration.
Tuples are not sentences. Simply adapting embedding tech-
niques originally developed for textual data ignores the richer
set of semantics inherent in relational data. Consider a cell
value t[Ai] of an attribute Ai in tuple t , e.g., “Mike” in the
first relation from the top. Conceptually, it has a semantic
connections with both other attributes of tuple t (such as
“iPad 4th”) and other values from the domain of attribute Ai
(such as “Paul”). Existing embedding techniques cannot such
semantic connections.
Embedding generation must span different datasets. Embed-
dings must be trained using heterogeneous datasets, so that
they can meaningfully leverage and surface similarity across
data sources. A notion of similarity between different types
of entities, such as tuples and attributes, must be developed.
Tuple-tuple and attribute-attribute similarity are important
features for entity resolution and schema matching.

There are multiple challenges to overcome. First, it is not
clear how to encode the semantics of the relational datasets
into the embedding learning process. Second, datasets may
share very limited amount of information, have radically
different schemas, and contain a different number of tuples.
Finally, datasets are often incomplete and noisy. The learning
process is affected by low information quality, generating
embeddings that do not correctly represent the semantics of
the data.

1.3 Contributions
We introduce EmbDI, a framework for building relational, lo-
cal embeddings for data integration that introduces a number
of innovations to overcome the challenges above. We iden-
tify crucial components and propose effective algorithms for

instantiating each of them. EmbDI is designed to be modular
so that any one can customize it by plugging in other algo-
rithms and benefit from the continuing improvements from
the deep learning and the database communities. The right-
hand side of Figure 1 shows the main steps in our solution.
1. Graph Construction.We leverage a compact tripartite
graph-based representation of relational datasets that can
effectively represent a rich set of syntactic and semantic
relationships between cell values. Specifically, we use a het-
erogeneous graph with three types of nodes. Token nodes
correspond to the unique values found in the dataset. Record
Id nodes (RIDs) represent a unique token for each tuple.
Column Id nodes (CIDs) represent a unique token for each
column/attribute. These nodes are connected by edges based
on the structural relationships in the schema. This graph is
a compact representation of the original datasets that high-
lights overlap and explicitly represent the primitives for data
integration tasks, i.e., records and attributes.
2. Embedding Construction. We formulate the problem
of obtaining local embeddings for relational data as a graph
embeddings generation problem. We use random walks to
quantify the similarity between neighboring nodes and to
exploit metadata such as tuple and attribute IDs. This method
ensures that nodes that share similar neighborhoods will be
in close proximity in the final embeddings space. The corpus
that is used to train our local embeddings is generated by
materializing these random walks.
3. Optimizations. Learning embeddings can be a difficult
task in the presence of noisy and incomplete heterogeneous
datasets. For this reason, we introduce an array of optimiza-
tion techniques that handle difficult cases and enable refine-
ment of the generated embeddings. The flexibility of the
graph enables us to naturally represent external information,
such as data dictionaries, to merge values in different for-
mats, and data dependencies, to impute values and identify
errors. We propose optimizations to handle imbalance in the
datasets’ size and the presence of numerical values (usually
ignored in textual word embeddings).
Experimental Results. We propose an extensive set of
desiderata for evaluating relational embeddings for data in-
tegration. Specifically, our evaluation focuses on three major
dimensions that measure how well do the embeddings (a)
learn the tuple-, attribute- and constraint-based relation-
ships in the data, (b) learn integration specific information
such as tuple-tuple and attribute-attribute similarities, and
(c) improve the behavior of DL-based data integration algo-
rithms. As we shall show in the experiments, our proposed
algorithms perform well on each of these dimensions.
Outline. Section 2 introduces background about embeddings
and data integration. Section 3 shows a motivating example

Paul

iPad

Mike

Galaxy

Steve

SamsungApple

Pre-trained embeddings

Wiki,
News,
...

Doc Corpus

Word2Vec,
fastText, ...

r1 Paul r5 Apple A4 Samsung r4 Rick A3 Paul ...
r5 Paul r1 iPad_4th A2 Galaxy r3 Steve r3 Galaxy
... 3

Paul iPad 4th

Mike

Rick

Galaxy

Steve

Samsung
Apple

Local embeddingsEmbDI

Paul iPad 4th

Mike iPad 4th

Steve Galaxy

Rick Samsung

Paul Apple

Datasets

Paul iPad 4th
Mike iPad 4th
Steve Galaxy

Rick Samsung
Paul Apple

2

1

r1
r2
r3

r4
r5

A1 A2

A4A3

A1 A2

A4A3

r1

r2

r3

r4

r5

r1r2

r3
r4

r5

A1 A2 A4
A3

Figure 1: Illustration of a simplified vector space learned from text (prior approaches) and from data (EmbDI).

that highlights the limitations of prior approaches and iden-
tifies a set of desiderata for relational embeddings. Section 4
details the major components of the framework. Section 5
presents our optimizations to handle data imbalance, missing
values, and external information. Section 6 describes how we
use embeddings for data integration tasks. Section 7 reports
extensive experiments validating our approach. We conclude
in Section 8 with some promising next steps.

2 BACKGROUND

Embeddings. Embeddings map an entity such as a word to
a high dimensional real valued vector. The mapping is per-
formed in such a way that the geometric relation between the
vectors of two entities represents the co-occurrence/semantic
relationship between them. Algorithms used to learn embed-
dings rely on the notion of “neighborhood”: intuitively, if
two entities are similar, they frequently belong to the same
contextually defined neighborhood. When this occurs, the
embeddings generation algorithm will try to force the vec-
tors that represent these two entities to be close to each other
in the resulting vector space.
Word Embeddings [3, 37] are trained on a large corpus of
text and produce as output a vector space where each word
in the corpus is represented by a real valued vector. Usually,
the generated vector space has either 100 or 300 dimensions.
The vectors for words that occur in similar context – such as
SIGMOD and VLDB – are in close proximity to each other.
Popular architectures for learning embeddings include con-
tinuous bag-of-words (CBOW) or skip-gram (SG). Recent
approaches rely on using the context of word to obtain a
contextual word embedding [13, 32].
Node Embeddings. Intuitively, node embeddings [20] map
nodes to a high dimensional vector space so that the likeli-
hood of preserving node neighborhoods is maximized. One
way to achieve this is by performing random walks start-
ing from each node to define an appropriate neighborhood.

Popular node embeddings are often based on the skip-gram
model, since it maximizes the probability of observing a
node’s neighborhood given its embedding. By varying the
type of random walks used, one can obtain diverse types of
embeddings [9].
Embeddings for Relational Datasets. The pioneering
work of [6] was the first to apply embedding techniques
for extracting latent information from relation data. Recent
extensions [5, 7] leverage the learned embeddings to develop
a “cognitive” database system with sophisticated function-
ality for answering complex semantic, reasoning and pre-
dictive queries. Termite [15] seeks to project tokens from
structured and unstructured data into a common representa-
tional space that could then be used for identifying related
concepts through its Termite-Join approach. Freddy [21] and
RetroLive [22] produce relational embeddings that combine
relational and semantic information through a retrofitting
strategy. There has been prior work that learn embeddings
for specific tasks like entity matching (such as DeepER [14]
and DeepMatcher [30]) and schema matching (Rema [26]).
Our goal is to learn relational embeddings that is tailored for
data integration and can be used for multiple tasks.

3 MOTIVATING EXAMPLE
In this section, we discuss an illustrative example that high-
lights the weaknesses of current approaches and motivates
us to design a new approach for relational, local embedding.
Consider the scenario where one utilizes popular pre-

trained embeddings such as word2vec, GloVe, or fastText.
Figure 1 shows a hypothetical filtered vector spaces for the
tokens in an example with two small customer datasets. We
observe that the pre-trained embeddings suffer from a num-
ber of issues when we use them to model the two relations.

(1) A number of words, such as “Rick”, in the dataset are
not in the pre-trained embedding. This is especially prob-
lematic for enterprise datasets where tokens are often
unique and not found in pre-trained embeddings.

(2) Embeddings might contain geometric relationships that
exist in the corpus they were trained on, but that are miss-
ing in the relational data. For example, the embedding
for token “Steve” is closer to tokens “iPad” and “Apple”
even though it is not implied in the data.

(3) Relationships that do occur in the data, such as between
tokens “Paul” and “Mike”, are not observed in the pre-
trained vector space.

Naturally, learning local embeddings from the relational
data often produces better results. However, computing em-
beddings for non integrated data sources is a non trivial
task. This becomes especially challenging in settings where
data is scattered over different datasets with heterogeneous
structures, different formats, and only partially overlapping
content. Prior approaches express such datasets as sentences
that can be consumed by existing word embedding methods.
However, we find that these solutions are still sub-optimal
for downstream data integration tasks.
Technical Challenges.We enumerate four challenges that
must be overcome to obtain effective embeddings.
1. Incorporating Relational Semantics. Relational data exhibits
a rich set of semantics. Relational data also follows set se-
mantics where there is no natural ordering of attributes.
Representing the tuple as a single sentence is simplistic and
often not expressive enough for these signals.
2. Handling Lack of Redundancy. A key reason for the success
of word embeddings is that they are trained on large corpora
where there are adequate redundancies and co-occurrence to
learn relationships. However, databases are often normalized
to remove redundant information. This has an especially
deleterious impact on the quality of learned embeddings.
Rare words, which are very common in relational data, are
typically ignored by word embedding methods.
3. Handling Multiple Datasets.We cannot assume that each
of the datasets have the same set of attributes, or that there
is sufficient overlapping values in the tuples, or even that
there is a common dictionary for the same attribute.
4. Handling Hierarchical Data. Databases are inherently hier-
archical, with entities such as cell values, tuples, attributes,
dataset and so on. Incorporating these hierarchical units as
first class citizens in embedding training is a major challenge.

4 CONSTRUCTING LOCAL RELATIONAL
EMBEDDINGS

In this section, we provide a description of our approach
and how these design choices address the aforementioned
technical challenges. Our framework, EmbDI, consists of
three major components, as depicted in the right-hand side
of Figure 1.

(1) In the Graph Construction stage, we process the relational
dataset and transform it to a compact tripartite graph
that encodes various relationships inherent in it. Tuple
and attribute ids are treated as first class citizens.

(2) Given this graph, the next step is Sentence Construction
through the use of biased random walks. These walks
are carefully constructed to avoid common issues such
as rare words and imbalance in vocabulary sizes. This
produces as output a series of sentences.

(3) In Embedding Construction, the corpus of sentences is
passed to an algorithm for learning word embeddings.
Depending on available external information, we perform
optimizations to the graph and the workflow to improve
the embeddings’ quality.

4.1 Graph Construction

Why construct a Graph? Prior approaches for local em-
beddings seek to directly apply an existing word embedding
algorithm on the relational dataset. Intuitively, all tuples in a
relation are modeled as sentences by breaking the attribute
boundaries. The collection of sentences for each tuple in the
relation thenmakes up the corpus, which is then used to train
the embedding. This approach produces embeddings that are
customized to that dataset, but it also ignores signals that
are inherent in relational data. We represent the relational
data as a graph, thus enabling a more expressive representa-
tion with a number of advantages. First, it elegantly handles
many of the various relationships between entities that are
common in relational datasets. Second, it provides a straight-
forward way to incorporate external information such as
“two tokens are synonyms of each other”. Finally, when mul-
tiple relations are involved, a graph representation enables a
unified view over the different datasets that is invaluable for
learning embeddings for data integration.
Simple Approaches. Consider a relation R with attributes
{A1,A2, . . . ,Am}. Let t be an arbitrary tuple and t[Ai] the
value of attribute Ai for tuple t . A naive approach is to cre-
ate a chain graph where tokens corresponding to adjacent
attributes such as t[Ai] and t[Ai+1] are connected. This will
result inm edges for each tuple. Of course, if two different
tuples share the same token, then they will reuse the same
node. However, relational algebra is based on set semantics,
where the attributes do not have an inherent order. So, sim-
plistically connecting adjacent attributes is doomed to fail.
Another extreme is to create a complete subgraph, where an
edge exists between all possible pairs of t[Ai] and t[Ai+1].
Clearly, this will result in

(m
2
)
edges per tuple. This approach

results in the number of edges is quadratic in the number
of attributes and ignores other token relationships such as
“token t1 and token t2 belong to the same attribute”.

Relational Data as Heterogeneous Graph. We propose
a heterogeneous graph with three types of nodes. Token
nodes correspond to information found in the dataset (i.e. the
content of each cell in the relation). Multi-word tokens may
be represented as a single entity, get split over multiple nodes
or use a mix of the two strategies. We describe the effect of
each strategy more in depth in Section 7. Record Id nodes
(RIDs) represent each tuple in the dataset, Column Id nodes
(CIDs) represent each column/attribute. These nodes are
connected by edges according to the structural relationships
in the schema. This representation can produce a vector for
all RIDs (CIDs) rather than representing them by combining
the vectors of the values in each tuple (column).

r1

r2

r3

r4

r5

Paul

iPad 4th

Mike

Steve

Galaxy

Rick
Samsung

Apple

A1

A2

A3

A4

Figure 2: The graph for the two tables in Figure 1.

Consider a tuple t with RID rt . Then, nodes for tokens
corresponding to t[A1], . . . , t[Am] are connected to the node
rt . Similarly, all the tokens belonging to a specific attribute
Ai are connected to the corresponding CID, say ci . This
construction is generic enough to be augmented with other
types of relationships. Also, if we know that two tokens
are synonyms (e.g. via wordnet), this information could be
incorporated by reusing the same node for both tokens. Note
that a token could belong to different record ids and column
ids when two different tuples/attributes share the same token.
Numerical values are rounded to a number of significant
figures decided by the user, then they are assigned a node like
regular categorical values; null values are not represented
in the graph. We discuss more sophisticated approaches for
handling numeric, noisy, and null values in Section 5.
Algorithm 1 shows the operations performed during the

graph creation with hybrid representation of multi-word
tokens. Figure 2 shows a graph constructed for the datasets
in Figure 1. Note that this could be considered as a variant
of tripartite graph. A key advantage of this choice is that it
has the same expressive power as the complete sub-graph
approach, while requiring orders of magnitude fewer edges.

Algorithm 1 GenerateTripartiteGraph
Input: relational dataset D
let G = empty graph
for all ci in columns(D) do
G.addNode(ci)

for all ri in rows(D) do
G.addNode(Ri) //Ri is the record id of ri
for all value vk in ri do
if vk is multi-word then
for all word in tokenize(vk) do
G.addNode(word)
G.addEdge(word, Ri), G.addEdge(word, ck)

else if vk is single-word then
G.addNode(vk)
G.addEdge(vk , Ri), G.addEdge(vk , ck)

Output: graph G

4.2 Sentence Construction

Graph Traversal by RandomWalks. To generate the dis-
tributed representation of each node in the graph, we pro-
duce a large number of random walks and gather them in
a training corpus where each random walk will correspond
to a sentence. Using graphs and random walks allows us to
have a richer and more diverse set of neighborhoods than
what would be possible by encoding a tuple as a single sen-
tence. For example, a walk starting from node ‘Paul’ could
go to node A3, and then to node ‘Rick’. This walk implicitly
defines the neighborhood based on attribute co-occurrence.
Similarly, the walk from ‘Paul’ could have gone to ‘r5’ and
then to ‘Apple’, incorporating the row level relationships.
Our approach is agnostic to the specific type of random walk
used, with different choices yielding different embeddings.
For example, one could design random walks that are biased
towards other nodes belonging to the same tuple, or towards
rare nodes. To better represent all nodes, we assign a “budget”
of randomwalks to each of them and guarantee that all nodes
will be the starting point of at least as many random walks
as their budget. After choosing the starting pointTi , the ran-
dom walk is generated by choosing a neighboring RID of Ti ,
R j . The next step in the random walk will then be chosen
at random among all neighbors of node R j , for example by
moving on Ca . Then, a new neighbor of Ca will be chosen
and the process will continue until the random walk has
reached the target length. We use uniform random walks in
most of our experiments to guarantee good execution times
on large datasets, while providing high quality results. We
compare alternative random walks in the experiments.
FromWalks to Sentences. It is important to note that the
path on the graph represented by the random walk does
not necessarily reflect the sentence that will be inserted in

Algorithm 2 GenerateRandomWalk
Input: starting node nj , random walk length l
r j = findNeighboringRID(nj)
W = seq(r j , nj)
currentNode = nj
while length(W) < l do
nextNode = findRandomNeighbor(currentNode)
W .add(nextNode)
currentNode = nextNode

Output: walkW

the training corpus. For example, a possible random walk
could be the following: RaTbRcTdCeTfCдTh , whereT∗,R∗,C∗

correspond to nodes of type tokens, record ids, and column
ids, respectively. We note that the random walks include
nodes corresponding to RIDs and CIDs. We noticed that the
presence (or absence) of CIDs and RIDs in the sentences that
build the training corpus has large effects on the data integra-
tion performance of the algorithm. Indeed, we observe that
treating these as first order citizens, we can represent them
as points in the vector space in the same way as any other
token. For example, two nodes corresponding to different
attributes might co-occur in many random walks, resulting
in embeddings that are closer to each other: this may imply
that these two attributes represent similar information. A
similar phenomenon could also be obtained for tuple embed-
dings. A number of prior approaches such as DeepER [14]
or DeepMatcher [30] only learn embeddings for tokens and
then obtain embeddings for tuples by averaging them or
combining by using a RNN. The use of our random walks as
sentences provides additional information about the neigh-
borhood of each node, which would not be so easily obtained
by using only the structured data format.

4.3 Embedding Construction
The generated sentences are then pooled together to build a
corpus that is used to train the embeddings algorithm. Our
approach is agnostic to the actual word embedding algorithm
used. We piggyback on the plethora of effective embeddings
algorithms such as word2vec, GloVe, fastText, and so on.
Every year, improved embedding training algorithms are
released, and this has a transitive effect on our approach.
Broadly, these techniques can be categorized as word-based
(such as word2vec) or character-based (such as fastText). We
discuss the hyperparameters for embedding algorithms such
as learning method (either CBOW or Skip-Gram), dimen-
sionality of the embeddings, and size of context window in
Section 7.

4.4 Algorithm So Far
Algorithm 3 provides the pseudocode for learning the local
and relational embeddings based on our discussion. In the
next section, we discuss a number of practical improvements
to this basic algorithm.

Algorithm 3Meta Algorithm for EmbDI
1: Input: relational datasets D, number of random walks

nwalks , number of nodes nnodes
2: W = []
3: G = GenerateTripartiteGraph(D)
4: for all nj ∈ nodes(G) do
5: for i = 1 to (nwalks/nnodes) do
6: wi = GenerateRandomWalk(nj)
7: W .add(wi)
8: E = GenerateEmbeddings(W)
9: Output: Local relational embeddings E

5 IMPROVING LOCAL EMBEDDINGS
In this section, we discuss a number of challenging issues
that occur when applying EmbDI in practice.

5.1 Handling Imbalanced Relations
In a real-world scenario, there often are multiple relations
and local embeddings must be learned for each of them. For
a single relation, one can simply perform multiple random
walks from each token node. This approach directly amelio-
rates the issue of infrequent words that plagues word em-
bedding approaches, by guaranteeing that even rare words
will appear frequently enough to be properly represented.
A further complication arises when one relation contains
many more nodes than the other. If we perform an equal
amount of random walks starting from each node, the sig-
nals from the larger dataset might overwhelm those coming
from the smaller dataset. We found that an effective heuris-
tic is to start random walks only from nodes that co-occur
in both datasets. This approach often produces sentences
where the proportion of larger and smaller datasets is compa-
rable. Furthermore, these nodes also happen to be the most
informative ones as they connect two relationships and often
quite useful for integrating these two relations. Even with
datasets with a minimum amount of overlap (less than 2%),
this approach ensures adequate coverage of all nodes and
minimizes the issues due to relation imbalance.
The overlapping tokens are the bridge between the two

datasets to be integrated. To maximize their impact in the
embedding creation, one could start every sentence with
a RID or CID, randomly picked from those connected to
the token at hand. This small change in the random walk

creation affects the results by creating evidence of similarity
for the corresponding rows and columns.
Example. Assume that node token Ta appears in two rows
Ra and Rb over two large datasets. Since the token is rare,
it will appear most likely only once as the first node in the
walk, therefore the embedding algorithm will only see it
in few patterns, such as TaRbTc or TaCdTe . To improve the
modeling of the Ta we start the sentence with a RID or CID
connected toTa , such asCdTaCc and RaTaRb . This way, even
if the token is rare, it gives strong signals that the attributes
and the row that contain it are related.

5.2 Handling Missing and Noisy Data
Many real-world datasets contain a large amount of missing
data, so any effective approach for learning embeddings must
have a cogent strategy for this scenario. The ideal approach
employs imputation techniques to minimize the number of
missing values. Unfortunately, this might not always be pos-
sible, since algorithms for imputation and data repair often
do not provide good results in a relational setting. Prior ap-
proaches for learning relational embeddings skip missing
values when computing embeddings. However, this approach
is often counter-productive as missing data can be an indica-
tion of systemic error. Approaches where all missing values
are treated as if they were the same entity (so one node
for all nulls), or unique entities (individual nodes for each
null) are not appropriate. The first approach creates a super
node to store all NULL values, which has multiple negative
effects on the result and produces no benefit. The second
approach creates a unique node for each NULL: this does
not cause any issues, but does not provide any additional
information either. Moreover, if the number of NULLs is
large, this approach increases the processing time without
any commensurate benefit.

We propose a simple mechanism to use classical database
techniques such as Skolemization [23] to handle missing
data. Approaches for data repairs [10] are very accurate in
identifying the errors, but struggle to identify the correct
updated value [1, 2].When there is no certain update tomake,
most methods put a placeholder, like a variable or the output
of a function that is related to Skolemization. Our model
is able to naturally consume and model these placeholders
to obtain better embeddings. Hence, the data repairing task
could be used to address both missing and noisy values.

Consider the scenario with two relations R1 and R2. With-
out loss of generality, let us assume that they both have
attributes A1,A2,A3,A4. Suppose there are two tuples:

R1(a,N1, c,N2) and R2(a,b, c ′,N3)

Here N1,N2,N3 denote the null values. If A1 is the key
attribute, we can derive three important updates in the data,

including the creation of two placeholders, and rewrite the
two tuples are follows:

R1(a,b,X1,X2) and R2(a,b,X1,X2)

where X1 models the conflict between c and c ′ and X2
merges the two nulls. This reduces the heterogeneity of the
data and improves the quality of the embeddings. Consider
also that all occurrences of c and c ′ are merged in the graph,
even in tuples that do not satisfy the pattern of this functional
dependency. A single placeholder may end up merging a
large number of token occurrences in the original dataset.

5.3 Incorporating External Information

Node Merging. Our graph representation allows one to in-
corporate external information such as wordnet or other
domain specific dictionaries in a seamless manner. This is an
optional step to improve the quality of embeddings. For ex-
ample, consider two attributes from different relations – one
stores country codes while the other contains complete coun-
try names. If some mapping between these two exists, then
we can merge the nodes corresponding to, say, Netherlands
and NL. The same reasoning applies to tuples (attributes): if
trustable information about possible token matches is avail-
able, we merge different RIDs (CIDs) in the same node. Merg-
ing of nodes could be achieved by using external functions,
such as matchers based on syntactic similarity, pre-trained
embeddings, or clustering. This often increases the number
of overlapping tokens across datasets and produces better
embeddings for data integration.
Node Replacement in RandomWalks.Merging of nodes
is only viable if we are confident that the two tokens refer to
the same underlying entity. In practice, the mapping between
two entities is imperfect. For example, one could have a ma-
chine learning algorithm that says that tokens Ti and Tj are
similar with confidence of 0.8. The extreme approaches of
merging the two nodes (such as by applying a fixed threshold)
or ignoring this strong information are both sub-optimal. We
propose the use of a replacement strategy where, during the
construction of the sentence corpus, token Ti is replaced by
Tj (and vice versa) with a probability proportionate to their
closeness. Note that this only affects the sentence construc-
tion. The random walk by itself is not affected. Specifically,
if the random walk is at node Ti , it might output Tj in the
sentence instead of Ti . However, when choosing the next
node, it will only pick the neighbors of node Ti .
Handling Numeric Data. Integer and real-valued at-
tributes are very common in relational data. A straightfor-
ward approach is to treat them as strings, so that each distinct
value is assigned to a node in the graph. However, this sim-
plistic approach does not always work well, as it ignores

geometric relationships between numbers such as the Eu-
clidean distance. One way to use this distance information is
to replace two numbers if they are within a threshold distance.
Unfortunately, identifying an effective threshold is quite chal-
lenging in general. Consider two set of tokens {1, 2, 3, . . . , }
and {1, 1.00001, 1.00002, . . . , 2}. In the former, we can plausi-
bly replace 1 with 2 while it would not be appropriate in the
latter scenario. We apply an effective heuristic that combines
node replacement with data distribution-aware distance be-
tween two numbers. Typically, most numeric attributes can
be approximated by a small number of distributions, such as
Gaussian or Zipfian. As an example, if a particular attribute is
Gaussian, we can efficiently estimate its parameters – mean
and variance. Then, given a number i , we generate a random
number r around i in accordance with the learned parame-
ters. If the new random number is part of the domain of the
attribute, then we replace i with r .

5.4 Embedding Alignment

Algorithm 4 AlignEmbeddings
1: Input: relations R1, R2, E = EmbDI (concat(R1, R2))
2: letUi be the set of unique words in Ri ∀i ∈ 1, 2
3: let A = U1 ∩U2
4: A = E(wi) ∀wi ∈ R1
5: B = E(w j) ∀w j ∈ R2
6: W ∗ = argminW ,A(WA − B)
7: A′ =W ∗A
8: for allwi ∈ R1 ∪ R2 do
9: if wi ∈ R1 ∩ R2 then
10: E′(wi) = average(A′(wi), B(wi))
11: else if wi ∈ R1 then
12: E′(wi) = A′(wi)

13: else
14: E′(wi) = B(wi)

15: Output: Aligned embeddings E′

Typically, embeddings for multiple relations are trained
using two extreme approaches – either by training embed-
dings one relation at a time or by pooling all the relations and
training a common space. The individual approach is more
scalable, but misses out on patterns that could be inferred
by pooling the data. The pooled approach must ensure that
signals from larger relations do not overpower those from
smaller ones. We advocate for a novel embedding alignment
approach, adapted from multilingual translation [11].
We begin by training embeddings each relation individ-

ually. This may cause RID and CID vectors that represent
different instances of the same entity to differ from each
other when the datasets share a small number of common
tokens. To mitigate this problem, we align the embeddings of

the values contained by the two datasets that were trained in
the initial execution by pivoting on the new information, ba-
sically changing the vector space that represents one dataset
to better match the vector space of the other. This allows us
to better materialize relationships between tokens, even if
they do not co-occur in a single relation. Furthermore, this
approach ensures that the geometric relationships between
tokens within each individual dataset are retained.
Assume that we have two relations R1 and R2 with ade-

quate overlap, and that A and B represent the embeddings of
words inR1 andR2, respectively. It is possible to formulate an
orthogonal Procrustes problem [11] by seeking a translation
matrixW ∗ = argminW ,A(WA−B), withA = U1∩U2 being
the intersection of unique values (the anchors) in common
between the two starting relations. Applying the translation
matrixW ∗ to A yields a translated matrix A′, which mini-
mizes the distance between anchor points. To employ this
technique in the ER and SM tasks, we use matching CIDs and
RIDs in the original embeddings as anchors to perform the
rotation. We then match again on the rotated embeddings.
Algorithm 4 describes the embedding alignment.

5.5 Handling Multi-Word Tokens
Multi-word tokens are common in relational dataset (such
as “Adobe Photoshop CS3”). There are a number of ways
in which multi-word cells could be tokenized. One simple
option is to treat the entire word sequence as a single token.
The other option is to tokenize the word sequence, compute
the word embeddings for each of the tokens, and then ag-
gregate these token embeddings to get the embedding for
the multi-word cell. There are two key problems: how to
tokenize a multi-world cell and how to aggregate the token
embeddings to get the cell embeddings. There are no simple
answers to this problem. In some cases, these multi-word
tokens contain substrings that would yield additional infor-
mation if they were represented as stand-alone nodes (in the
example above, “Adobe” and “Photoshop” are likely candi-
dates). Unfortunately, in the general case it is very hard to
pinpoint cases where performing the expansion would im-
prove the results; consider a counterexample such as “Saving
Private Ryan”: in this case, we would rather have a single
node to represent the movie title as it likely is a “primary
key” in the dataset and as such would help when performing
integration tasks.

To mitigate both issues, we found a simple yet effective
heuristic that allows us to handle both multi-word tokens
and rare tokens at the same time. Instead of representing all
unique values in both datasets as nodes, we make a distinc-
tion between nodes that are present in both as they already
appear, and those that appear only in one dataset. Then, we
tokenize the shared tokens and expand those that are not in

common. This effectively allows us to extract the information
present within multi-word tokens and, possibly, introduce
connections that would be missed otherwise. Moreover, rep-
resenting the common values as unique tokens introduces
“bridges” between the datasets, which can be exploited during
the step of random walks generation to introduce semantic
connections that would not be identified otherwise.

6 USING EMBEDDINGS FOR
INTEGRATION

Once the embeddings are trained, they can be used for com-
mon data integration tasks. We now describe unsupervised
algorithms that employ the embeddings produced by Em-
bDI to perform two tasks widely studied in data integration,
Schema Matching and Entity Resolution.
Schema Matching (SM). Traditional approaches rely on
grouping attributes based on the value distributions or use
other similarity measures. Recently, [16] used embeddings to
identify relationships between attributes using both syntactic
and semantic similarities. However, they use embeddings
only on attribute/relation names and do not consider the
instances – i.e. values taken by the attribute.

Algorithm 5 describes the steps taken to perform schema
matching between two attributes by exploiting their cosine
distance in the vector space. Consider that, to prevent false
positives in the column alignment, we terminate the algo-
rithm after two iterations have been completed, even if some
candidate pools may still contain values.

Algorithm 5 Schema Matching
1: let C1 be the set of CIDs of dataset D1 and C2 be the set

of CIDs of dataset D2
2: let d(ci) be the list of distances between column ci ∈ C1

and all other columns ck ∈ C2, sorted in ascending order
of distance (and viceversa).

3: let T = C1 ∪ C1 be the set of columns to be matched
4: while T , ∅ do
5: for all ck ∈ T do
6: if d(ck) , ∅ then
7: c ′k = findClosest(d(ck))
8: c ′′k = findClosest(d(c ′k))
9: if c ′′k == ck then
10: ck and c ′k are matched
11: remove ck , c ′k from T

12: else
13: removeCandidate(d(ck), c ′k)
14: removeCandidate(d(c ′k), ck)
15: else
16: remove ck from T

Entity Resolution (ER). Recent works used pre-existing
embeddings to represent tuples [14, 30]. In contrast, our ap-
proach relies on the use of RIDs as nodes in the heterogenous
graph. This allows EmbDI to learn better embeddings for the
entire record from the data itself, rather than relying on com-
bination methods such as averaging or concatenating the
embeddings of the terms in the tuple. This information is
then used to perform unsupervised ER by computing the dis-
tance between RIDs. We will also discuss in the experiments
how one can piggyback on prior supervised approaches by
passing the trained embeddings as features to [14, 30].

Algorithm 6 describes the steps taken to identify the
matches in the Entity Resolution task. We assume that no
matches for Ri are present in D1.

Algorithm 6 Entity Resolution
1: let R1 be the set of RIDs ∈ D1
2: let R2 be the set of RIDs ∈ D2
3: let d(ri) be the list of distances between RID ri ∈ Ri and

the closest ntop RIDs ∈ D j , with i , j.
4: for all ri ∈ D1 ∪ D2 do
5: d(ri) = findClosest(ri , ntop)
6: for all rk ∈ D1 do
7: r ′k = findClosest(d(rk))
8: r ′′k = findClosest(d(r ′k))
9: if r ′′k == rk then
10: rk and r ′k are matched

Verifying the symmetry of the relationship has the ad-
vantage of increasing the precision by reducing the False
Positive Rate, without penalizing the recall. The effect of
ntop is described in Table 5. In both algorithms, many el-
ements (either RIDs or CIDs) will have no matches in the
other dataset. If appropriate embeddings were learned for
the RIDs, then this approach will produce good matches,
which is indeed what we observe in our experiments.
Token Matching (TM). We also consider the problem of
matching tokens that are conceptual synonyms of each other,
a task that is also known as string matching [34, 39]. For
example, one relation could encode a language as “English”
while other could encode it as “EN”. Note that this is different
from schema matching, where the objective is to identify at-
tributes that represent the same information. Instead, we are
interested in finding pairs of tokens from different relations
that are related conceptually. Given two aligned attributes
Ai and Aj , we seek to identify if two tokens tk ∈ Dom(Ai)

and tl ∈ Dom(Aj) are related. Given the token tk , we identify
the set of top-n token ids that are closest to tk . We announce
that the first token tl ∈ Dom(Aj) that occurs in the ranked
list is the conceptual synonym of tk .

Name (shorthand) # tuples # columns # distinct values # matches # sentences % overlap
IMDB-Movielens (IM) 49875 15 118779 4115 2810900 8.79
Amazon-Google (AG) 4589 3 5390 1166 166316 6.01
Walmart-Amazon (WA) 24628 5 45454 961 1168033 3.10
Itunes-Amazon (IA) 62830 8 53079 131 1931816 5.84
Fodors-Zagats (FZ) 864 6 3282 109 69100 9.08
DBLP-ACM (DA) 4910 7 6555 2223 191083 62.33
DBLP-Scholar (DS) 66879 4 131099 5346 3299633 2.33

BeerAdvo-RateBeer (BB) 7345 4 11260 67 310083 10.18
Million Songs Dataset (MSD) 1000000 5 870841 1292023 31180683 n.a.

Table 1: Dataset properties.

7 EXPERIMENTS
In this section we first demonstrate that our proposed em-
beddings learn the major relationships inherent in structured
data (Section 7.1). We then show the positive impact of our
embeddings for multiple data integration tasks in supervised
and unsupervised settings (Section 7.2). Finally, we analyze
the contributions of our design choices (Section 7.3).
Datasets. We used 8 datasets from the literature [12, 14, 18,
30] and a dataset with a larger schema (IM) that we created
starting from open data (https://www.imdb.com/interfaces/,
https://grouplens.org/datasets/movielens/). Details for the
scenarios are in Table 1. For the majority of the scenarios, less
than 10% of the distinct data values are overlapping across
the two datasets, MSD is a dataset with one table only.
Pre-trained Embeddings. In the following, pre-trained
word embeddings have been obtained from fastText [4].
We tested also GloVe [31] and obtained comparable quality
results. We relied on state of the art methods to combine
words in tuples and to obtain embeddings for words that are
not in the pre-trained vocabulary [8, 14].
Embedding Generation Algorithms. We test four algo-
rithms for the generation of local embeddings from relational
dataset. All local methods make use of our tripartite graph
and exploit record and column IDs in the integration tasks.

The first method is Basic, which creates embeddings from
permutations of row tokens and sentences with samples of
attribute tokens. As the method is aware of the structure
of the database, it can learn representation for tuples and
attributes. We fixed the size of the sentence corpus for Basic
to contain the same number of tokens in EmbDI’s corpus.
The second method is Node2Vec [20], a widely used al-

gorithm for learning node representation on graphs. Given
our graph as input, it learns vectors for all nodes. We used
the implementation from the paper with default parameters.

The third method is Harp [9], a state of the art algorithm
that learns embeddings for graph nodes by preserving higher-
order structural features. This method represents general
meta-strategies that build on top of existing neural algo-
rithms to improve performance.We used the implementation
from the paper with default parameters.
The fourth method is the one presented in Section 4, we

refer to it as EmbDI in the following (https://gitlab.eurecom.
fr/cappuzzo/embdi). The default configuration uses our tri-
partite graph, walks (sentences) of size 60, 300 dimensions
for the embeddings space, the Skip-Gram model in word2vec
with a window size of 3, and different tokenization strategies
to convert cell values in nodes. We report the numbers of
generated sentences for each dataset in Table 1. The number
of sentences depends on the desired number of tokens in
the corpus, we discuss a rule-of-thumb to obtain reasonable
sizes in the ablation analysis.
By default, EmbDI uses optimizations in data integration

tasks. However, to be fair to pre-trained embeddings, our
default configuration does not exploit external information,
therefore the techniques in Sections 5.2, 5.3, and 5.4 are not
used - we show their impact in the ablation study. Experi-
ments have been conducted on a laptop with a CPU Intel
i7-8550U, 8x1.8GHz cores and 32GB RAM.

7.1 Evaluating Embeddings Quality
We introduce three kinds of tests tomeasure howwell embed-
dings learn the relationships inherent in the relational data.
Each test consists of a set of tokens taken from the dataset
as input, while the goal is to identify which token does not
belong to the set (function doesnt_match in Python library
gensim). For the MatchAttribute (MA) tests, we randomly
sample four values from an attribute and a fifth value from a
different attribute at random in the same dataset, e.g., given
(Rambo III, The matrix, E.T., A star is born, M. Douglas),
the test is passed if M. Douglas is identified. In MatchRow
(MR), we pick all tokens from a row and replace one of them

https://www.imdb.com/interfaces/
https://grouplens.org/datasets/movielens/
https://gitlab.eurecom.fr/cappuzzo/embdi
https://gitlab.eurecom.fr/cappuzzo/embdi

Basic Node2Vec Harp EmbDI
MA MR MC AVG MA MR MC AVG MA MR MC AVG MA MR MC AVG

BB .99 .33 .32 .55 .97 .66 .92 .85 .96 .65 .95 .85 .92 .50 .77 .73
WA .19 .27 .12 .19 mem mem mem mem .16 .32 .13 .20 .94 1.00 .99 .98
AG 1.00 .42 .10 .51 1.00 .39 1.00 .80 .99 .37 1.00 .79 1.00 .38 1.00 .79
FZ .08 .30 .00 .13 .84 .88 .62 .78 .80 .86 .89 .85 .94 .99 .94 .95
IA .09 .11 .09 .09 mem mem mem mem .81 .59 .96 .78 .89 .85 .98 .90
DA .08 .29 .02 .13 .79 .77 .18 .58 .51 .74 .49 .58 .79 .91 .66 .79
DS 1.00 .58 .69 .76 mem mem mem mem .12 .06 .06 .08 .90 .99 .99 .96
IM .99 .34 .64 .66 mem mem mem mem .07 .29 .10 .16 .74 .42 .78 .65
MSD .31 .37 .51 .39 mem mem mem mem t.o. t.o. t.o. t.o. .60 .95 .83 .79

Table 2: Quality results for local embeddings generation.

at random with a value from a different row, also selected
at random from the same dataset, e.g., (S. Stallone, Rambo
III, 1952, P. MacDonald). Finally, in MatchConcept (MC), we
model more subtle relationships. We manually identify two
attributes A1 and A2 that are in a one to many relationship.
For a random token x inA1, we identify all tuplesT such that
(A1 = x), we take threeA2 distinct values inT and we finally
add a random value y (not in T) from A2. The test is passed
if y is identified as unrelated from the other tokens, e.g., (Q.
Tarantino, Pulp fiction, Kill Bill, Jackie Brown, Titanic). This
test observes whether the relationship between co-occurring
elements (such as directors and their movies) is stronger
than the relationship between elements that belong to the
same attribute. We took the union of the (aligned) datasets
for each scenario and created between 1000 and 11000 tests,
depending on its size in terms of rows and attributes.
We report the quality results in Table 2, where each

number represents the fraction of passed tests. With large
datasets, some methods either failed the execution or have
been stopped after a cut-off time of 10 hours. While on aver-
age the local embeddings generated by EmbDI are superior
to all other methods, our solution is beaten in few cases.
By increasing the percentage of row permutations in Ba-
sic, results improve for MR but decrease for MA, without
significant benefit for MC. This shows that complex relation-
ships are not modelled by row and attribute co-occurrence.
Node2Vec fails on our configuration for the larger scenarios
with memory errors (mem), while Harp has been stopped
after 10 hours for MSD (t.o.). We do not report results for
pre-trained embedding as they are not aware of the relation-
ships in the dataset and perform very poorly for this task.
For example, they obtain .33 on average for dataset BB (MA:
.49, MR: .27, MC: .24) and 0.16 on average for dataset AG
(MA: .03, MR: .22, MC: .22).
Take-away: our graph preserves the structure of the dataset
and EmbDI generates local embeddings that model column,

row, and inter-tuple relationships better than other embed-
ding generation methods.

Unsupervised
Base EmbDI Node2Vec Harp SEEPP SEEPL

BB 1.00 1.00 1.00 1.00 .75 .75
WA 1.00 1.00 mem .60 .60 .80
AG 1.00 1.00 1.00 1.00 1.00 1.00
FZ 1.00 1.00 1.00 1.00 1.00 1.00
IA 1.00 1.00 mem 1.00 .50 .75
DA 1.00 1.00 mem .50 .75 .81
DS 1.00 .50 mem 1.00 .60 .73
IM .60 .78 mem .78 .68 .75

Table 3: F-Measure results for Schema Matching (SM).

7.2 Data Integration Tasks
We test schema matching and entity resolution in every in-
tegration scenario with two datasets and report preliminary
results on token matching. In the following, we measure
the quality of the results w.r.t. hand crafted ground truth
for each task with precision, recall, and their combination
(F-measure). Execution times are reported in seconds.
Schema Matching.We test an unsupervised setting using
Algorithm 6 with overlap of columns treated as bag-of-words
(Base) and with local embeddings. We also report for an
existing system with both pre-trained embeddings (SeepP),
as in the original paper [16], and EmbDI local embeddings
(SeepL), as they are the ones with competitive performance
that we could generate in all cases.

Table 3 reports the results w.r.t. manually defined attribute
matches. All methods are unsupervised, but we distinguish
two groups. In the first group, local embeddings are gener-
ated and then used with Algorithm 6 from Section 6. Basic
local embeddings lead to 0 attribute matches in this experi-
ment and we do not report them in the table. While EmbDI

Unsupervised Supervised Task specific
Pre-trained Local (5% labelled) (5% labelled)
fastText EmbDI-S EmbDI-F EmbDI-O Node2Vec Harp DeepERP DeepERL DeepERP DeepERL

BB .59 .50 .82 .86 .86 .86 0.51 0.53 0.54 0.58
WA .58 .59 .75 .81 mem .78 0.58 0.62 0.62 0.63
AG .18 .14 .57 .59 .70 .71 0.53 0.56 0.58 0.62
FZ .99 .98 .99 .99 1.00 1.00 1.00 1.00 1.00 1.00
IA .10 .09 .09 .11 mem .14 .76 .81 .77 0.82
DA .72 .95 .94 .95 .87 .97 .84 .89 .86 .90
DS .80 .85 .75 .92 mem .81 .80 .87 .82 .91
IM .31 .90 .64 .94 mem .95 .82 .88 .84 .91

Table 4: F-Measure results for Entity Resolution (ER).

embeddings lead to the best results in most cases, for DS
Harp gets better results.While we can get comparable results
with optimizations (Section 5), this shows that our graph en-
ables other, more complex embedding schemes to get good
results. Base performs very well across most datasets and it
is outperformed by local embeddings in one case.

In the second group, we compare pre-trained and EmbDI
embeddings with an existing matching system. We have two
main remarks. First, the simple unsupervised method with
EmbDI embeddings outperforms by at least an absolute 10%
the SeepP baseline in terms of F-measure in all scenarios.
Second, the baselinemethod improves by an average absolute
6% in F-measure when it is executed with EmbDI embeddings,
showing their superior quality for SM w.r.t. pre-trained ones.

We observe that results for SeepP depend on the quality of
the original attribute labels. If we replace the original (expres-
sive and correct) labels with synthetic ones, SeepP obtains
F-measure values between .30 and .38. Local embeddings
from EmbDI do not depend on the presence of the attribute
labels. Finally, we tested a traditional instance-based schema
matcher that does not use embeddings [27, 28], whose results
are lower than the ones obtained by EmbDI in all scenarios.
Take-away: EmbDI local embeddings are more effective than
pre-trained ones for the schema matching task when tested
with two different unsupervised algorithms.
Entity Resolution. For ER, we study both unsupervised
and supervised settings. To enable baselines to execute this
scenario, we aligned the attributes with the ground truth.
EmbDI can handle the original scenario where the schemas
have not been aligned with a limited decrease in ER quality.

As baseline for the unsupervised case, we use Algorithm 6
with pre-trained embeddings (fastText). We report for our
integration algorithm with EmbDI embeddings in three vari-
ants of the way in which we tokenize the cell values in the
dataset. EmbDI-S (Simple) uses the original value as a token
node in the graph (e.g., “iPad 4th 2012”), while EmbDI-F (Flat-
ten) models it as single words (e.g., nodes “iPad“, “4th”, “2012”

connected to the same RID and to the same CID). The first
strategy is more accurate in the modeling on tokens with
more than one word as each token gets its own embedding;
this is more precise than the one derived from combining
the embeddings of the single words. However, a finer gran-
ularity is mandatory for heterogeneous datasets with long
texts in the cell values for two reasons. First, accurate node
merging is challenging with long sequences of words. Sec-
ond, in different datasets the same entities can be split across
attributes or grouped in one attribute. As an example, the BB
datasets contain attributes “beer name" and “brewing com-
pany" but in one dataset oftentimes the name of the brewing
company appears in the beer name “brewing_company_A
beer_name_1", while in the other dataset only beer_name_1
appears in the name column. As we do not assume any user-
defined pre-processing of the attribute values, modeling the
words individually is beneficial in these cases. The third tok-
enization strategy, EmbDI-O (Overlap) is a trade off between
the two that preserves as token nodes the cell values that
are overlapping across the two datasets and models as single
words the others.

We also test our local embeddings in the supervised setting
with a state of the art ER system (DeepERL), comparing its
results to the ones obtained with pre-trained embeddings
(DeepERP).

Results in Table 4 for unsupervised settings show that
EmbDI-O embeddings obtain the best quality results in three
scenarios and second to the best in four cases. In every case,
local embeddings obtained from our graph outperform pre-
trained ones. For supervised settings, as in the SM experi-
ments, using local embeddings instead of pre-trained ones
increases the quality of an existing system. In this case, super-
vised DeepER shows an average 5% absolute improvement
in F-measure with 5% of the ground truth passed as training
data. The improvements decrease to 4% with more training
data (10%). Similarly to SM, in the ER case local embeddings
obtained with the Basic method lead to 0 rows matched.

ntop
P R F

AG BB DA IA IM WA AG BB DA IA IM WA AG BB DA IA IM WA
1 .803 .929 .991 .278 .973 .925 .407 .765 .884 .039 .862 .634 .540 .839 .935 .068 .914 .752
5 .716 .885 .986 .132 .963 .853 .494 .794 .917 .055 .911 .748 .585 .837 .950 .077 .936 .797
10 .715 .885 .986 .137 .963 .841 .496 .794 .917 .078 .912 .757 .586 .837 .950 .100 .936 .797
100 .714 .885 .986 .125 .962 .834 .496 .794 .917 .078 .912 .764 .585 .837 .950 .096 .936 .797

Table 5: Effects of ntop on ER quality.

Finally, we investigated if our task agnostic embeddings
can be fine-tuned for a specific task. This process of pre-
training followed by fine-tuning is a common workflow in
NLP. Specifically, we start with the relational embeddings
learned by EmbDI and allow it to be fine-tuned for each
individual tuple pair if it improves performance. We achieve
this by modifying the embedding lookup layer of DeepER.
By default, this layer does a “lookup” of a given token from
the embedding dictionary. We allow DeepER to learn an
additional weight matrixW such that the original EmbDI
embeddings can be tuned for ER. The final two columns of
Table 4 shows the results.
Take-away: EmbDI embeddings are more effective than pre-
trained ones for entity resolution in both the unsupervised
and the supervised settings.
Token Matching. Differently from the previous experi-
ments, we do not claim an unsupervised solution for this in-
tegration task. In fact, we argue that our embeddings should
be used as an additional signal to be combined with the other
similarity measures used for this task, e.g., edit distance, Jac-
card, TF/IDF. We evaluated the accuracy of this approach
on the IM scenario in matching of tokens across the two
datasets in two (aligned) pairs of columns. We picked this
dataset and these columns as it was possible to manually
craft the ground truth for their matches. Two columns in a
pair have the information about the same entities, but ex-
pressed in different formats, such as “DK” for “Denmark”,
“UK” for “Great Britain”, and so on.We used the unsupervised
matching based on nearest neighbor also used for ER.
For the column expressing information about coun-

tries, pre-trained embeddings and Jaccard similarity obtain
matches with 0.13 and 0.19 F-measure, respectively, while
EmbDI embeddings get 0.31. For the column about languages,
the baselines obtain 0.17 and .20, while EmbDI obtains 0.30.
These results suggest that local embeddings can bring a
stronger signal than pre-trained embeddings and Jaccard
distance in string matching systems.

7.3 Ablation Analysis
We now show the effect of the different parameters, design
choices, and optimizations in our framework.

Parameters. Several parameters in EmbDI affect the quality
of the local embeddings. All the results reported above have
been obtained using a single configuration, but the quality
of the results for the different tasks increases significantly
by tuning the parameters for the specific tasks.

The default setting uses walks of size 60, 300 dimensions
for the embeddings space, and the Skip-Gram model in
word2vec with a window size of 3. We noticed that CBOW
performs better than Skip-Gram on the ER task, while hav-
ing worse results in the EQ and SM. For example, executing
the ER task with CBOW increases F-measure by at least 2
absolute points for IM and DS. Similarly, decreasing the size
of the walks to 5 for the SM task raises the F-measure for DS
to 1. This is because embeddings from shorter walks better
model the value overlap across columns. As this signal drives
the matching task, a lower value increases the quality of the
SM matches, but reduces the quality for EQ and ER. We also
observe that an even lower value (3) decreases the results
also for SM, demonstrating that a semantic characterization
in also needed. A larger window for word2vec (5) has a nega-
tive effect on all tests and all datasets. Reducing the number
of dimensions has limited, mixed effects on average, thus
showing that our method is robust to this parameter.
A larger corpus leads to better results in general, but

we empirically observed diminishing returns after a cer-
tain size. As a rule of thumb, we fix the total number of
tokens in the corpus with the following formula: #corpus
tokens=(#dist.values+#rows)*1000. The number of walks is
derived by dividing the number of tokens by the walk length.
We set ntop = 10 in our ER experiments; by varying ntop

we observe the expected trade-offs between P and R, as re-
ported in Table 5 for six datasets. Results for the FZ scenario
do not change with different ntop values and results for DS
are close in values and trend to those reported for DA.
Optimizations.We tested optimizations of the original de-
fault configuration for EmbDI. For replacement (Section 5.3),
we used an external dictionary for one column in each
dataset, e.g., different formats of country codes. The biggest
improvement is in ER with an absolute 3% on average, while
the quality is stable for SM and EQ. For alignment (Sec-
tion 5.4), we fed the optimization step with the outcome
of the default model, i.e., we got candidate RIDs and CIDs

from a first execution and then refined the embeddings with
this information. This leads to a an absolute 2% increase in
F-measure for ER, with the higher contribution coming from
the better recall.

% null Year values

E
R

 F
-m

ea
su

re

85

90

95

100

5 10 15 20 25 30

Skip FD

Figure 3: EmbDI ER F-measure for IM with increasing
amount of missing values in the data.

Figure 3 shows the impact on ER of insertedmissing values
in the IM dataset.We defined the FD Title,Director→ Year and
inserted increasing amount of noise at random in the column
Year. As the number of records in common across the two
datasets is very low,most of the NULLs aremodifying records
that are only in one dataset. Surprisingly, this has a visible
effects on the results in terms of F-measure. While the default
Skip solution (ignore NULL values in the graph creation)
stays stable until a large number of NULLs is introduced, the
results improve for the optimization that enforces the FD in
the graph construction. This improvement is driven by the
increasing precision. In fact, there are non duplicate movies
that have a large number of attribute values in common,
including the year, and that are identified as duplicates by our
unsupervised method (based on neighbor RIDs). However,
the FD enforces that any missing value is treated as a new
value, distinct from the others, and this information moves
the embedding of the RID with the NULL away from the
similar tuple that is not a duplicate.
Execution times. Compared to Node2Vec and Harp, the
execution of EmbDI is much faster and is able to compute
local embeddings for all medium size datasets in minutes on
a commodity laptop. As reported in Table 6 for experiments
with the default configuration (using word2vec and Skip-
Gram), the embedding creation (E) takes on average about
80% of the total execution time, while graph generation (G)
takes less than 1%, and sentence creation (W) the remaining
19%. The execution times for the embeddings creation from
the sentences depends drastically on the algorithm used and
its configuration, e.g., CBOW is much faster than Skip-Gram.

DS G W E W+E N2V HARP
BB 2.47 66.7 133 200 1663 732
WA 13.4 329 1113 1442 mem 2394
AG 1.19 34.4 122 156 953 135
FZ 0.3 12.0 40.7 52.6 178 27.0
IA 32.0 533 1360 1893 mem 9122
DA 2.08 43.6 130 173 920 128
DS 33.9 919 3027 3947 mem 21659
IM 31.6 768 2772 3540 mem 8001
MSD 146 6377 27050 33427 mem t.o.

Table 6: Execution times (in seconds) for embeddings
generation for EmbDI, Node2Vec (N2V) and Harp.

As the graph generation is common to all methods, we
compare our solution with Node2Vec (N2V) and Harp in
terms of time to generate walks and produce embeddings
(W+E). EmbDI is faster in most cases, up to 7x in two datasets,
and, in contrast with Harp, never hits the time out (t.o.) of
10 hours. With larger datasets, Node2Vec raised a memory
error on our 32GB reference machine. EmbDI does not suffer
from this problem, even in a laptop with 16GB of main mem-
ory, we have been able to run all tests, including the ones
for the biggest dataset of 1M tuples (139MB).

8 NEXT STEPS
In this paper, we proposed a novel framework -EmbDI- for au-
tomatically learning local relation embeddings of high qual-
ity from the data. The learned embeddings provide promis-
ing results for a number of challenging and well studied
data integration tasks such as entity resolution and schema
matching. Our embeddings are generic to data integration
and could also be tuned in a task specific manner to obtain
better results.

There are a number of intriguing research questions that
we plan to tackle next. One of our key focus areas is in seam-
lessly combining pre-trained and local embeddings. While
blindly using pre-trained embeddings provide sub-optimal
results, they could be intelligently combined with local em-
beddings provided by EmbDI to obtain a hybrid embedding
that is more effective. Recently, there has been increasing
interest in incorporating contextual information into word
embeddings and language modeling. Approaches such as
BERT [13] achieve state of the art results in NLP due to this.
An important open question is to formally define appropri-
ate context for relational data integration so that DL models
could be built for learning contextualized word embeddings.

Acknowledgement. This work has been partially supported
by the ANR grant ANR-18-CE23-0019 and by the IMT Futur
& Ruptures program “AutoClean”.

REFERENCES
[1] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F.

Ilyas, Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan
Tang. 2016. Detecting Data Errors: Where are we and what needs to
be done? PVLDB 9, 12 (2016), 993–1004.

[2] Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller,
Paolo Papotti, and Donatello Santoro. 2015. Messing Up with BART:
Error Generation for Evaluating Data-Cleaning Algorithms. PVLDB 9,
2 (2015), 36–47.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
2016. Enriching Word Vectors with Subword Information. CoRR
abs/1607.04606 (2016). arXiv:1607.04606 http://arxiv.org/abs/1607.
04606

[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
2017. Enriching Word Vectors with Subword Information. TACL 5
(2017), 135–146.

[5] Rajesh Bordawekar, Bortik Bandyopadhyay, and Oded Shmueli. 2017.
Cognitive database: A step towards endowing relational databases
with artificial intelligence capabilities. arXiv preprint arXiv:1712.07199
(2017).

[6] Rajesh Bordawekar and Oded Shmueli. 2017. Using word embedding
to enable semantic queries in relational databases. In DEEM Workshop.
ACM, 5.

[7] Rajesh Bordawekar and Oded Shmueli. 2019. Exploiting Latent Infor-
mation in Relational Databases via Word Embedding and Application
to Degrees of Disclosure.. In CIDR.

[8] Öykü ÖzlemÇakal, MohammadMahdavi, and Ziawasch Abedjan. 2019.
CLRL: Feature Engineering for Cross-Language Record Linkage. In
EDBT. 678–681.

[9] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2017.
HARP: Hierarchical Representation Learning for Networks. CoRR
abs/1706.07845 (2017). arXiv:1706.07845 http://arxiv.org/abs/1706.
07845

[10] Xu Chu and Ihab F. Ilyas. 2019. Data Cleaning. ACM.
[11] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic

Denoyer, and Hervé Jégou. 2017. Word translation without parallel
data. arXiv preprint arXiv:1710.04087 (2017).

[12] Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra,
and Youngchoon Park. 2017. Falcon: Scaling Up Hands-Off Crowd-
sourced Entity Matching to Build Cloud Services. In SIGMOD.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[14] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty,
Mourad Ouzzani, and Nan Tang. 2018. Distributed representations of
tuples for entity resolution. PVLDB 11, 11 (2018), 1454–1467.

[15] Raul Castro Fernandez and SamuelMadden. 2019. Termite: a system for
tunneling through heterogeneous data. arXiv preprint arXiv:1903.05008
(2019).

[16] Raul Castro Fernandez, Essam Mansour, Abdulhakim A Qahtan,
Ahmed Elmagarmid, Ihab Ilyas, Samuel Madden, Mourad Ouzzani,
Michael Stonebraker, and Nan Tang. 2018. Seeping semantics: Linking
datasets using word embeddings for data discovery. In ICDE.

[17] FigureEight. 2016. Data Science Report. https://visit.figure-eight.com/
data-science-report.html. (2016).

[18] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F. Naughton,
Narasimhan Rampalli, Jude W. Shavlik, and Xiaojin Zhu. 2014. Cor-
leone: hands-off crowdsourcing for entity matching. In SIGMOD.

[19] Behzad Golshan, Alon Y. Halevy, George A. Mihaila, and Wang-Chiew
Tan. 2017. Data Integration: After the Teenage Years. In PODS. 101–
106.

[20] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature
learning for networks. In SIGKDD. ACM, 855–864.

[21] Michael Günther. 2018. FREDDY: Fast Word Embeddings in Database
Systems. In SIGMOD. ACM, 1817–1819.

[22] Michael Günther, Maik Thiele, Erik Nikulski, and Wolfgang Lehner.
2020. RetroLive: Analysis of Relational Retrofitted Word Embeddings.
EDBT (2020).

[23] Richard Hull and Masatoshi Yoshikawa. 1990. ILOG: Declarative Cre-
ation and Manipulation of Object Identifiers. In VLDB. 455–468.

[24] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen,
Arvind Satyanarayan, Tim Kraska, Çagatay Demiralp, and César Hi-
dalgo. 2019. Sherlock: A Deep Learning Approach to Semantic Data
Type Detection. In SIGKDD. ACM.

[25] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa.
2019. Low-resource Deep Entity Resolution with Transfer and Active
Learning. arXiv preprint arXiv:1906.08042 (2019).

[26] Christos Koutras, Marios Fragkoulis, Asterios Katsifodimos, and
Christoph Lofi. 2020. REMA: Graph Embeddings-based Relational
Schema Matching. SEA Data workshop (2020).

[27] Bruno Marnette, Giansalvatore Mecca, Paolo Papotti, Salvatore Rau-
nich, and Donatello Santoro. 2011. ++Spicy: an OpenSource Tool for
Second-Generation Schema Mapping and Data Exchange. PVLDB 4,
12 (2011), 1438–1441.

[28] Sabine Maßmann, Salvatore Raunich, David Aumüller, Patrick Arnold,
and Erhard Rahm. 2011. Evolution of the COMA match system. In
International Workshop on Ontology Matching.

[29] Renée J Miller, Fatemeh Nargesian, Erkang Zhu, Christina
Christodoulakis, Ken Q Pu, and Periklis Andritsos. 2018. Mak-
ing Open Data Transparent: Data Discovery on Open Data. IEEE Data
Eng. Bull. 41, 2 (2018), 59–70.

[30] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Young-
choon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay
Raghavendra. 2018. Deep learning for entity matching: A design space
exploration. In SIGMOD.

[31] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014.
Glove: Global Vectors for Word Representation. In EMNLP. 1532–1543.

[32] MatthewE. Peters, MarkNeumann,Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextual-
ized word representations. CoRR abs/1802.05365 (2018).

[33] Tye Rattenbury, Joseph M Hellerstein, Jeffrey Heer, Sean Kandel, and
Connor Carreras. 2017. Principles of data wrangling: Practical tech-
niques for data preparation. " O’Reilly Media, Inc.".

[34] Paul Suganthan, Adel Ardalan, AnHai Doan, and Aditya Akella. 2018.
Smurf: Self-Service String Matching Using Random Forests. PVLDB
12, 3 (2018), 278–291.

[35] Saravanan Thirumuruganathan, Shameem A Puthiya Parambath,
Mourad Ouzzani, Nan Tang, and Shafiq Joty. 2018. Reuse and adap-
tation for entity resolution through transfer learning. arXiv preprint
arXiv:1809.11084 (2018).

[36] Saravanan Thirumuruganathan, Nan Tang, Mourad Ouzzani, and An-
Hai Doan. 2020. Data curation with Deep Learning. EDBT (2020).

[37] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word represen-
tations: a simple and general method for semi-supervised learning. In
ACL. ACL, 384–394.

[38] Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-
Matching using Pre-trained Deep Models and Transfer Learning. In
WWW. 2413–2424.

[39] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-Join: Joining
Tables by Leveraging Transformations. PVLDB 10, 10 (2017), 1034–
1045.

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1706.07845
http://arxiv.org/abs/1706.07845
http://arxiv.org/abs/1706.07845
https://visit.figure-eight.com/data-science-report.html
https://visit.figure-eight.com/data-science-report.html

	Abstract
	1 Introduction
	1.1 Word Embeddings for Data Integration
	1.2 Local Embeddings for Data Integration
	1.3 Contributions

	2 Background
	3 Motivating Example
	4 Constructing Local Relational Embeddings
	4.1 Graph Construction
	4.2 Sentence Construction
	4.3 Embedding Construction
	4.4 Algorithm So Far

	5 Improving Local Embeddings
	5.1 Handling Imbalanced Relations
	5.2 Handling Missing and Noisy Data
	5.3 Incorporating External Information
	5.4 Embedding Alignment
	5.5 Handling Multi-Word Tokens

	6 Using Embeddings for Integration
	7 Experiments
	7.1 Evaluating Embeddings Quality
	7.2 Data Integration Tasks
	7.3 Ablation Analysis

	8 Next Steps
	References

